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Machine learning models with uncertainty quantification have recently emerged as attractive tools to
accelerate the navigation of catalyst design spaces in a data-efficient manner. Here, we combine
active learning with a dropout graph convolutional network (dGCN) as a surrogate model to explore the
complex materials space of high-entropy alloys (HEAs). We train the dGCN on the formation energies
of disordered binary alloy structures in the Pd-Pt-Sn ternary alloy system and improve predictions on
ternary structures by performing reduced optimization of the formation free energy, the target property
that determines HEA stability, over ensembles of ternary structures constructed based on two
coordinate systems: (a) a physics-informed ternary composition space, and (b) data-driven
coordinates discovered by the Diffusion Maps manifold learning scheme. Both reduced optimization
techniques improve predictions of the formation free energy in the ternary alloy space with a
significantly reduced number of DFT calculations compared to a high-fidelity model. The physics-
based scheme converges to the target property in a manner akin to a depth-first strategy, whereas the
data-driven scheme appears more akin to a breadth-first approach. Both sampling schemes, coupled
with our acquisition function, successfully exploit a database of DFT-calculated binary alloy structures
and energies, augmented with a relatively small number of ternary alloy calculations, to identify stable
ternary HEA compositions and structures. This generalized framework can be extended to incorporate

more complex bulk and surface structural motifs, and the results demonstrate that significant
dimensionality reduction is possible in thermodynamic sampling problems when suitable active

learning schemes are employed.

Computational high-throughput screening techniques have accelerated
catalyst discovery, primarily by facilitating rapid identification of promising
candidate materials for rigorous additional testing through detailed
experiments and simulations. Computational approaches have also enabled
in-operando catalyst structure prediction, wherein the stable structure(s)
may vary based on reaction conditions. However, when the materials space
under investigation is exceedingly complex, brute-force enumeration and
evaluation of target properties becomes intractable using first principles
methods such as density functional theory (DFT). Machine learning (ML)-
based surrogate models have been proposed as a possible alternative to
navigate these complex phase spaces at a fraction of the computational cost
of first principles methods'. In particular, graph convolutional neural net-
work (GCN) models™, including the crystal graph convolutional neural

network (CGCNN)* approach, have been explored as effective non-linear
maps between a material’s crystal structure, featurized as graphs, and one or
more desired target properties. GCNs, benchmarked against DFT data, have
been demonstrated to work as reliable surrogates for DFT for many classes
of materials and prediction tasks’™*. However, for an ML surrogate to
effectively discover new materials and catalysts via high-throughput
screening, it must be able to provide reliable predictions outside the train-
ing space, where DFT data are not necessarily available. It is therefore
necessary to provide reliable estimates of the uncertainty in the surrogate
model’s predictions.

A multitude of uncertainty quantification (UQ) techniques have been
used in recent years to address this issue, including Gaussian process
regression (GPR) models" query-by-committee', latent space distance”,
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Bayesian neural networks'®, and dropout neural networks'’. In general, a
surrogate model with UQ can provide not only an estimate of the target
property but also an associated uncertainty, and recently, Tran et al. *
provided a comparison of UQ techniques and various metrics used to judge
them. Since the uncertainty estimates are often associated with candidate
materials outside the training space, improved model predictions may be
found by iteratively sampling candidates that show either desired values of
the target property or high uncertainty, and then retraining the surrogate
model with these candidates included in the training data. Such an active
learning workflow has been demonstrated to work well for the discovery of
Ir-oxides™, transition metal complexes”, intermetallics™, transition metal
dichalcogenides™, solid-state electrolytes™, and high melting temperature
alloys™, among many others. In each of these cases, the active learning
workflow is geared towards the optimization of a particular target property
of interest along with improvement in model predictions.

The optimization approach described above can become challenging
when the system of interest is complex and the target property depends on a
large number of variables, often on the order of thousands or more. In most
cases, however, the intrinsic behavior of such systems in fact depends on
only a subset of the available quantities”’. Theoretically-motivated approa-
ches exist for correspondingly reducing the dimensionality of a system,
including the well-known Buckingham Pi theorem™, which seeks to com-
bine relevant physical quantities, often identified through intuition, into
dimensionless groups that capture system behavior more parsimoniously.
Such methods rely on prior analytical knowledge about the system of
interest, which usually allows one to preserve physical interpretability of the
reduced model. However, knowledge of a system’s inner workings is not
always available, and data-driven methods are required for cases involving a
black box. There is a variety of techniques for representing high-
dimensional data in a reduced space that retain only the information
deemed necessary for describing the system of interest. These include well-
known, linear methods such as principal component analysis (PCA)**** and
more advanced, nonlinear techniques such as diffusion maps (DMaps)’
and variational autoencoders®. Dimensionality reduction may be used to
ascertain the intrinsic dimensionality of a dataset that describes experi-
mental results for one or more properties of interest. Discovering the
intrinsic geometry of the input data can, in turn, simplify the task of opti-
mizing a target property by lowering the number of variables needed to learn
the relationship between inputs and output. Techniques such as DMaps
help find which combinations of variables matter, in the sense of con-
tributing to the functional behavior of the target property. These data-driven
effective coordinates may not correspond directly to individual variables,
but it is possible to check for a one-to-one relationship between the dis-
covered data-driven coordinates and a collection of physically meaningful
quantities™.

High-entropy alloys (HEAs) are a class of disordered, multimetallic
alloys that are stabilized due to their configurational entropy of mixing and
represent a complex materials space characterized by many variables™ . As
such, they can be considered to be an ideal materials science testbed for some
of the techniques described above. HEAs have shown promising activity and
stability as catalysts for various electrochemical reactions, such as the oxygen
reduction reaction (ORR)***, the CO, reduction reaction (CO,RR)*, the
oxygen evolution reaction (OER)*, and thermal catalytic reactions
including ammonia decomposition*"* and ammonia oxidation®. While the
vast design space of HEAs, consisting of multiple elements and configura-
tions, provides ample opportunities for tailoring catalytic properties, it also
presents a challenge in terms of computational tractability. Additionally, the
properties of interest that predict HEA stability—for instance, the free
energy of formation—are all functions of an ensemble of configurations,
rather than of a single structure, and estimation of these properties depends
on the method of sampling the ensemble. Usually, it is infeasible to sample
the entire configuration space; so statistical sampling methods are used to
infer the ensemble property from a reduced subset of configurations.
However, this approach introduces an additional sampling error in the
estimation of the property of interest. Traditional active learning paradigms

may not be ideally suited to elucidating such properties since they involve
acquisition of single candidates, as opposed to ensembles of candidates, and
they do not typically involve a treatment of sampling error.

Motivated by the above considerations, we present a modified active
learning workflow for the identification of HEAs with an optimal target
property—in this case, the formation free energy—calculated through
ensemble-averaging of properties of individual HEA configurations. We
consider a ternary alloy system consisting of the elements Pd, Pt,and Sn. The
choice of these elements is based on their utility as catalysts in a host of
reactions such as propane dehydrogenation and electrochemical nitrate
reduction, among many others* ™. Further, we utilize a dropout graph
convolutional network (dGCN) as a surrogate model to predict formation
energies, with associated uncertainties, of binary and ternary HEA config-
urations in this ternary alloy system. We train the dGCN on an initial dataset
consisting of only binary configurations, and then improve the model’s
prediction in the ternary space by iteratively sampling ternary configura-
tions that are grouped into ensembles. We compare two versions of our
proposed workflow, which differ primarily in how ensembles are formed.
The first is motivated by physical first principles and groups configurations
according to their composition. The second takes a more data-driven
approach and forms groups for the configurations using K-means clustering
on the dGCN’s internal representations in a lower dimensional space dis-
covered by DMaps. Further, we derive an acquisition function by combining
probability theory with a simple formalism for the canonical ensemble of
statistical mechanics that accepts ensembles of target properties and
uncertainties as inputs and suggests new candidate ensembles as outputs.
Additionally, we show that a physically significant parameter from the
original formalism, temperature, transforms into an exploration-
exploitation tradeoff parameter, providing more flexibility to our acquisi-
tion function.

Using this acquisition function, we select ensembles of ternary con-
figurations, representing either ternary compositions in the physics-driven
approach or clusters in DMaps space in the data-driven approach, randomly
sample ~100 ternary configurations from the selected ensemble, and per-
form DFT calculations to evaluate their formation energies. These ternary
configurations are then added to the training set, and the dGCN model is
retrained, completing one iteration of the active learning cycle. We perform
six iterations of this active learning cycle and compare predictions of the
active learned-models (from both approaches) with a high-fidelity model
trained on a larger set of DFT calculations. Broadly, we find that the for-
mation free energy predictions of the active learned-models converge to
‘true’ values, as predicted by the high-fidelity model, in the central region of
composition space, where most of the sampling occurs. Additionally, we
find that the convergence behavior is different for the two approaches—the
physics-based strategy performs more akin to a depth-first approach
whereas the data-driven strategy is more like a breadth-first approach.

Our approach provides a novel acquisition strategy to sample alloy
structures from an ensemble based on thermodynamic stability criteria. This
strategy permits iterative improvement of the predictions of a model of
ternary alloy formation energies—initially trained only on binary alloy
structures—by sampling using physics-informed and data-informed
schemes, the latter based on dimensionality reduction with Diffusion
Maps. These two active learning schemes are able improve the prediction
accuracy of formation free energies in ternary composition space to a level
comparable to what is achieved with a high-fidelity model trained on nearly
five times more ternary alloy structures. The results demonstrate that sig-
nificant dimensionality reduction, and consequent gains in efficiency, are
possible in thermodynamic sampling problems when suitable active
learning schemes are employed.

Results

Workflow

Here, we provide an overview of the proposed active learning scheme
(Fig. 1), with further details given below and in the Supplementary Infor-
mation (SI). As mentioned previously, we introduce two distinct methods of
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Fig. 1 | The active learning workflow. First, binary crystal configurations are
sampled from the edges of the ternary phase diagram and input to the DFT code to
evaluate formation energies. The dGCN (central block) is trained on these binary
alloy formation energies, converting an input crystal into a graph, on which con-
volution and pooling operations are performed to convert it to a 42-element
embedding vector representing the crystal. This vector is then fed to a feed-forward
neural network with dropout to predict the formation energy and corresponding
uncertainty. In the physics-informed scheme, ternary configurations are sampled

| —
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Acquisition Function

5

from a particular composition for which the acquisition function is minimized and
input to the DFT code for evaluation. In the data-driven scheme, the 42-element
embedding vector is input to the DMaps algorithm (lower block) to discover latent
coordinates. The acquisition function is computed on clusters formed in this lower
dimensional space through k-means clustering, and ternary configurations are
sampled from the selected cluster and input to the DFT code for evaluation. The
dGCN is then retrained on a dataset containing these additional sampled ternary
crystals.

selecting optimization coordinates: a physically motivated approach that
uses bulk composition as the main variables, and a data-driven approach
involving latent coordinates computed from the manifold learning techni-
que known as Diffusion Maps (DMaps). For ease of comparison, in each
case we group crystal structures into ensembles—either compositions, or
clusters in the space of DMaps coordinates—and we minimize an acquisi-
tion function inspired by statistical mechanics for the ensembles to deter-
mine the one with the most stable configurations for further investigation.
The two approaches follow the same overall workflow, except that the
ensembles formed in each consist of different subsets of all available crystal
structures.

We use our in-house code HEAT (High-Entropy Alloy Toolbox) to
generate an initial training set composed solely of binary alloy configura-
tions having all possible compositions that can be represented using a
16-atom unit cell. The choice of this unit cell is a balance between having a
high composition-space resolution and computational cost. For each of
these sets, we perform DFT calculations to evaluate formation energies,
storing the relaxed structures and corresponding formation energy values in
a training database. Next, we convert the relaxed structures into equivalent
graph representations for training our dropout graph convolutional net-
work (dGCN) to predict formation energies from crystal configurations. We
use dropout not only during network training, but also during prediction,
which enables us to obtain concomitant uncertainty estimates, as well. This
trained network becomes the basis of our surrogate model acquisition
function construction.

To start the process of selecting the subsequent candidate sample
points, we use HEAT to generate ternary crystal configurations from all
ternary compositions that can be represented using a 16-atom unit cell. For
each composition, 1% of the total number of possible configurations are

sampled to maintain computational tractability and a reasonable database
size. We show in Supplementary Section 3.1 that the error in formation free
energy, which we use to estimate stability, due to this reduced sampling can
be eliminated with a simple scaling factor. At this point, we do not perform
any DFT calculations, but instead use the current optimization iteration’s
version of the dGCN to predict formation energies and the corresponding
uncertainty estimates for all of the generated ternary configurations, storing
the results in a prediction database. As a part of the dGCN architecture,
discussed in Methods, we also obtain in this prediction phase a
42-dimensional vector representation of each generated crystal at this
iteration of the optimization.

Next, we group the ternary configurations in the prediction database
into ensembles. Here, the two approaches diverge. For the physics-informed
approach, the ensembles correspond to different bulk compositions. In the
case of the data-driven approach, DMaps is used to compute lower
dimensional representations of the 42-dimensional embeddings. K-means
clustering is then used to group ternary configurations into ensembles based
on proximity in this DMaps space.

Now, we proceed to optimize our acquisition function. The acqui-
sition function is derived from a modified partition function for the
Helmbholtz free energy of formation. The function is designed to pick
clusters in which structures have low formation energies ( U,j) and/or
high uncertainties (s;), as predicted by the dGCN. The inverse
temperature (f3), which is a physical parameter in the Helmholtz free
energy expression, transforms into an exploitation-exploration tradeoff
parameter, such that low values of 8 (or high temperatures) lead to
exploitation, and vice versa. For each ensemble 7, we input the formation
energies and uncertainties of ternary configurations in that ensemble
(predicted by the dGCN) from the prediction database to estimate the
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Fig. 2 | Evaluation of the model trained exclusively on binary alloys. a Parity plot
of dGCN-calculated formation energies and DFT-calculated formation energies of
Pd-Sn, Pt-Sn, and Pd-Pt binary alloy configurations in the initial training test set.
Each binary pair is represented by a different color. b Distribution of standard
deviations predicted using dGCN with the sharpness and coefficient of variation

Sharpness=0.027 eV per atom
C,=0.331

0.14 1
0.12 1
0.10 1
0.08 1
0.06 1

0.024
0.00-

0.01 0.02

0.03 0.04 0.05
Standard deviation (eV per atom)

(b)

0.06

‘ 01255
[
o
0.100 § 8
53
- 0.075 ég
0.050 89
I ES
0.0250 §
Q
©

0.000

Pd4PtyoSn; Pd1oPt,Sns PdgPtsSns Pd3Pt,Sny;
Composition

(d)

(C,). c Plot of mean relaxation distance against absolute error for randomly sampled
configurations from four different ternary compositions in the benchmark set.

d Composition-averaged mean relaxation distance and absolute error for compo-
sitions in the benchmark set.

corresponding value of our acquisition function, which is given by

2
s
2

(see Supplementary Section 3 for derivation and additional discussion). We
select as our next candidate the ensemble with the lowest computed value for
A;, randomly choose ~100 crystals from this ensemble, and use DFT to
calculate the associated formation energy values. We add the results to our
training database and repeat the procedure. We note that, for completeness,
in addition to the two approaches mentioned above, we also add one more
method of parametrizing the database: instead of a finite number of discrete
DMaps clusters, we also optimized in continuum DMaps space (see Sup-
plementary Section 6 for a brief discussion of this alternative strategy).
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The Initial Model

The first step in the workflow involves training the surrogate model on DFT
calculations of all symmetrically distinct binary alloy configurations in a
16-atom cell. This initial dataset comprises ~2000 binary alloy configura-
tions across the Pd-Sn, Pt-Sn, and Pd-Pt pairs. The data are partitioned into
training, validation, and test sets (60:20:20 split). The training set is used to
update the model weights and biases, while the validation set is used to assess
the model predictions at the end of every epoch using a collection of metrics
that includes the mean absolute error (MAE) and the root mean square
error (RMSE). At the end of the training procedure, we select the model with
the lowest validation error for evaluations on the test set. This validation-
based early stopping technique™ is used to prevent overfitting of the dGCN.
We keep the test set hidden from the model during the entire training
procedure and only used it to judge the model’s fidelity at the end of training.

We test the performance of the dGCN by making a parity plot (Fig. 2a)
and computing three metrics for the test set: mean absolute error (MAE),
root mean squared error (RMSE), and coefficient of determination (R?). The
MAE of the model is 0.019eV per atom which is comparable to that
reported for the CGCNN model in Xie et al. * (0.039 eV per atom). We also
plot a distribution of the dropout-based uncertainties (Fig. 2b) and calculate
three metrics to judge the performance of our UQ method: sharpness,
coefficient of variation, and calibration (miscalibration error). We find that
the sharpness is 0.027 eV per atom, the coefficient of variation is 0.331
(Fig. 2b), and the miscalibration error is 0.057 (Supplementary Figure 15).
According to an analysis of UQ methods in Tran et al. *, these values
indicate that the uncertainties are reasonably sharp and well-calibrated.

Next, we test the performance of the network on a benchmark set of
ternary structures sampled from Pd-rich (Pd, oPt,Sn,), Pt-rich (Pd,Pt,(Sn,),
Sn-rich (Pd;Pt,Sn,;), and near-equimolar (PdgPtsSns) compositions. We
sample 100 structures from each composition, perform DFT relaxations on
them, and calculate their relaxed-state formation energies. We compare
these values to the formation energies predicted by the binary-trained
dGCN model on the unrelaxed ternary structures and calculate an absolute
error, which we designate as the ‘benchmark set error’. We then plot this
absolute error against a mean relaxation distance, which we define as the
absolute difference between the mean nearest-neighbor distances of the
relaxed and unrelaxed ternary structures in the benchmark set (Fig. 2c). We
also plot composition-averaged quantities in Fig. 2d. We find that, in gen-
eral, structures and compositions that possess a higher mean relaxation
distance also have a higher benchmark set error, indicating that the more a
structure relaxes, the more difficult it is for the dGCN to predict its relaxed-
state energy correctly. Ultimately, it is the relaxed-state formation energies
that are of interest, since those correspond to ground state geometries.
However, it is only the initial, unrelaxed geometries that are available to the

npj Computational Materials | (2024)10:116



https://doi.org/10.1038/s41524-024-01256-z

Article

Colored by Pd Fraction

Colored by Pt Fraction

Colored by Sn Fraction Colored by Type

0.00 0.00 ’ 0.00

-0.02 -0.02 / ! -0.02

. ) * o
-0.04 -0.04 { -0.04 -
« Binary
-0.06 ' -0.06 s ° -0.06 . -006 {® Fmayj, -
-0.02 0.00 -0.02 0.00 -0.02 0.00 -0.02 0.00
[} [} [ [

Fig. 3 | Binary and ternary alloy structures in DMaps space. The first two DMaps
coordinates as computed for our cluster-based approach are plotted. The same
values are plotted in each subfigure, colored by composition (lighter is higher) (first

three) and by whether the corresponding crystal was binary or ternary (rightmost).
We used k-means to partition these data into 153 clusters, which were used ana-
logously to the compositions in the physically motivated approach.

dGCN. To resolve this apparent paradox, we train the network to predict
relaxed-state energies from unrelaxed geometries, so for any additional
ternaries introduced to the training set, we provide the unrelaxed structure
but label it with the relaxed-state formation energy.

As shown in Fig. 2d, there is a close association between the compo-
sition of the ternary alloys, the degree of relaxation, and the average error of
the dGCN model in the benchmark set, and we will return to this compo-
sition-based, physically motivated analysis below. At the same time, one
could envision using the 42-dimensional representations obtained from our
dGCN to characterize the configurations, with additional simplifications
provided by using DMaps to represent the network’s internal description of
each crystal in terms of fewer coordinates. To this end, we compute
DMaps on the data and find that the first two eigenvectors represent
intrinsic coordinates for a low-dimensional manifold embedded in the
42-dimensional space of dCGN representations. These diffusion space
coordinates, illustrated in Fig. 3, are a dimensionally reduced representation
of the original crystal lattice data. Notice that the intrinsic geometry of the
data bear certain resemblances to physical intuition. For example, there is a
small cluster of Pd-Pt binary crystals at a short distance from the remainder
of the data. These crystals are formed as fcc structures, rather than the bec
structures used for crystals that contain Sn, and DMaps distinguishes
between the two packing geometries without any explicit information about
this principle. In addition, we note that the larger cluster of data is roughly
triangular, corresponding to the traditional shape of ternary composition
plots, and there are three general regions of the cluster where crystals rich in
each element tend to be located. Using this DMaps representation of crystal
lattice space, we form 153 clusters via k-means, matching the number of
distinct compositions available for ternary alloys with 16-atom unit cells.
The acquisition function is further evaluated for these clusters. We note that
the clusters generated using DMaps computed on the latent space of the
model trained exclusively on binaries are used (without modification) for
subsequent steps of the active learning procedure. DMaps are not iteratively
recomputed on active-learned models trained on ternary structures, since
we find that there is no significant change in the latent space structure on the
addition of ternaries (see Supplementary Section 7 for a detailed discussion).

Comparison of active learning schemes

The network trained on only binary alloy structures, discussed above, is
considered to be a ‘low-fidelity’ model. Now, we iteratively retrain this
model by sampling additional ternary alloy structures in order to (1)
improve the value of the target property—the free energy of formation—in
the region of interest, and (2) improve predictions of the model in regions of
high uncertainty. To balance between these objectives, we evaluate the
ensemble acquisition function (discussed in Supplementary Section 3). We
predetermine a computational budget and an optimization schedule: 600
ternary alloy structures spread evenly over six iterations, with the first two
focused on exploration, the next two with a balanced focus, and the last two
centered on exploitation. This is achieved by setting the temperature to
T=100K, T=2000K, and T =6000K, respectively. We note that it is

possible to vary both the computational budget and optimization schedule
based on the system being studied and desired target property being opti-
mized. In our illustrative example, we stop at six iterations (600 datapoints)
since we find that the maximum errors in formation free energies (com-
pared to a high-fidelity model, discussed below) in the stable region of
composition space drop below the MAE (0.019 eV per atom) of the initial
model trained on binary configurations.

The selection of 100 ternary alloy structures to be sampled per iteration
can be made using either of the optimization approaches discussed above. In
the physically informed approach, structures are sampled from a single
composition in each iteration. In the data-informed approach, structures are
sampled from clusters that we initially construct using k-means clustering in
low-dimensional DMaps space. For every iteration, we evaluate the
ensemble acquisition function on each composition or cluster and randomly
select 100 structures from the composition or cluster with the minimum
value among those not previously sampled. We use DFT to evaluate the
formation energies of these sampled structures and transfer the candidates
from the predict set to the training set. The network is retrained with this
modified training set, and predictions on the predict set are updated to
identify the next composition or cluster to be sampled.

Next, we compare the relative stability of different compositions by
evaluating the formation free energy for each composition through a par-
tition function approach (see Supplementary Section 3.1 for details). Fig. 4
shows the free energy landscapes before and after six iterations of active
learning using the two approaches. Both approaches yield similar shifts in
the free energy minimum compared to the initial predictions based on the
binary alloys alone. However, the magnitudes of the changes in free energy
are relatively modest at all compositions, indicating that the initial model
trained only on binary alloy structures is a qualitatively reasonable model for
giving approximate predictions on ternary alloy structures. As such, this
active learning cycle can be conceptualized as a scheme to add quantitative
corrections to a qualitatively correct model.

To compare the performance of the two sampling approaches in more
detail, we create a larger set of DFT-optimized structures and energies, with
3478 ternary alloy structures representing 38 compositions evenly sampled
across the full ternary composition space such that sufficient Pd-rich, Pt-
rich, Sn-rich, and equimolar compositions are included. Although the full
ternary space cannot be exhaustively assessed with DFT calculations, this
‘high-fidelity’ data set is nevertheless considerably larger than the 600 DFT-
analyzed ternary alloy structures and can therefore serve as a proxy for the
full space.

First, we analyze the compositions that each approach selects for DFT
computation. These are summarized in Fig. 5. The physically informed
scheme samples configurations from only a single composition at each
iteration, so a total of six compositions are sampled by the end of the active
learning cycle. At every iteration, the composition with the lowest acquisi-
tion function value that is at least two composition steps away from cur-
rently sampled compositions is selected. We add the latter criterion to
efficiently sample training data based on our analysis in Supplementary
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Fig. 4 | Comparison of free energy landscapes predicted by the dGCN. Free energy landscapes (a) based on binary training data only, (b) after six iterations of the

composition-based active learning scheme, and (c) after six iterations of the DMaps cluster-based scheme.
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Fig. 5 | Analysis of the compositions of ternary crystals sampled during the
composition-based and cluster-based approaches. The ternary plot illustrates the
27 locations within composition space at which more than five configurations were
sampled (red circles, size indicates number of configurations at the corresponding
composition) and the six locations sampled during the composition-based approach
(black crosses). The two methods, though distinct, explore the same region of
composition space.

Section 5.2 that shows that the dGCN is able to generalize at least one
composition step away from sampled compositions. In the data-driven
scheme, configurations across multiple compositions may be sampled in
each iteration. In Fig. 5, we illustrate the identity of sampled compositions
(marked with circles) and the number of configurations sampled from each
(sizes of circles). Although the two approaches sample configurations in a
different manner, we find a significant overlap in the regions of composition
space that they explore. This region contains compositions that have the
lowest free energies, i.e., those that are most stable. Overall, we find that both
versions of the active learning scheme explore a region of composition space
characterized by roughly equimolar compositions, with some preference
toward Pd-rich structures.

Second, we analyze the order in which compositions and clusters are
suggested by the acquisition function in the workflow. The first two itera-
tions of our DMaps cluster-based scheme are exploratory and select clusters
on the edge of the region covered by our data, which initially have high
predictive uncertainty. Upon shifting to a balance between exploration and
exploitation, the scheme begins to prefer clusters closer to the center of the
data. At the sixth iteration, when we focus on exploitation and prioritize
favorable predicted formation energies, the scheme chooses the cluster that
overlaps the origin in diffusion coordinate space. We illustrate the first and
last iteration of this approach in Fig. 6, and the remaining iterations are
provided in Supplementary Section 4. Similarly, in the composition-based
scheme, the exploration-to-exploitation approach leads to a selection of
compositions on the edge of the composition space, followed by those in the
center of the ternary phase diagram. We show in Supplementary Figure 12
that changing the temperature in the acquisition function from low to high,

corresponding to a shift from exploration to exploitation, effectively cor-
responds to a changes in its minimum from the edge of the composition
space to its center.

Finally, we compare the errors between free energy predictions of the
DFT-based high-fidelity model (3478 entries) and our initial low-fidelity
model, based on binary alloys alone, in Fig. 7a. We find that Pd,PtsSn, and
nearby compositions, show the highest error in free energy. More generally,
compositions exhibiting the highest errors (> 0.1 eV per atom) contain a
majority of Sn, which may be explained by the fact that configurations in Sn-
rich compositions have a higher mean-relaxation distance, which makes it
more challenging for the dGCN to predict their relaxed-state formation
energies without any ternary data (consistent with Fig. 2d). After the active
learning has been completed, however, we find that errors are significantly
reduced, particularly in the central region of composition space, where most
of the sampling occurs. The maximum error in that region falls from 0.06 eV
per atom to 0.01 eV per atom for both the physically informed and data
informed models. Overall, the number of ternary compositions having an
error of greater than 0.1 eV per atom in their formation free energies falls
from 19 to 11 (for the physically informed model) and 8 (for the data-
informed model).

In Fig. 7b, we show both methods’ convergence to the ‘true’ free energy
value, as predicted by the high-fidelity model, with three illustrative com-
positions, Pds;PtsSn;, PdgPt,Sng, and PdgPtsSns. For all three compositions,
we find that the convergence to the value predicted by the high-fidelity
model is gradual for the data-informed model. In contrast, the convergence
of the physics-informed model is uneven, with no clear monotonic trend.
For Pt;PtsSn,, we find that the data-informed model is able to reduce the
error in formation energy from about 0.1 eV per atom to less than 0.02 eV
per atom within the six-iteration cycle, whereas the physics-informed model
reduces the error to about 0.04 eV per atom. In the case PdgPt,Sns (the
composition with the lowest free energy as predicted by the high-fidelity
model), the error is reduced to less than 0.01 eV per atom from 0.05 eV per
atom using both schemes. The convergence of the data-informed scheme is,
again, more monotonic as compared to the physics-informed scheme,
which only begins converging after an adjacent composition (i.e., Pd,Pt;Sns)
is sampled at the fifth iteration. Similarly, in the case of PdsPt;Sns, both the
schemes reduce the error to less than 0.01 eV per atom from 0.03 eV per
atom, but the convergence is more oscillatory for the physics-informed
approach. Here, too, the physics-informed scheme starts converging rapidly
when a surrounding composition is sampled in the fifth iteration. Based on
these results, the difference between the two approaches may be likened to
the contrast between depth-first and breadth-first strategies. The physically
informed approach prioritizes depth and appears to learn a more accurate
local representation that improves predictions in a narrow region of com-
position space at each iteration. The data-driven approach, on the other
hand, prioritizes breadth and appears to learn a more holistic representa-
tion, but lacks enough data to make an accurate prediction initially. This
dearth in training data is progressively mitigated with more active learning
iterations, leading to a gradual convergence to the true value.
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100 crystals. In the final iterations, the focus is on exploitation, and a cluster near the
center of the data is selected. Grey points represent crystals in other clusters not
selected for the current iteration. ¢ Phase diagram and table highlighting the com-
positions chosen in the physics-based approach.

Discussion
We present an active learning framework to identify stable compositions in a
Pd-Pt-Sn ternary alloy system. In this framework, a dGCN is used as a
surrogate model to predict the target property, i.e., the formation energy, as
well as the associated uncertainty for binary and ternary bulk alloy structures.
The initial dGCN model is trained on the DFT-predicted formation energies
of binary structures only and shows reasonable parity on the test set consisting
of binaries. When this model is tested on a benchmark set of ternary struc-
tures, we find that the error varies significantly based on the ternary com-
position, and this error is, in turn, dependent on how much the ternary
structure relaxes, which we quantify using a ‘mean relaxation distance’ metric.

Considering the enormity of the ternary crystal configuration space
(O ( 107) ) , we use active learning to improve the predictions of the dGCN on
ternary structures. First, we sample 1% of the total number of ternary
structures for each composition that can be represented using a 16-atom unit
cell. To determine stability, we evaluate the formation free energy via the
canonical partition function for each ternary composition, modified to
account for the limited sampling. Further, we derive an acquisition function
based on the modified partition function that is used to sample ensembles by
balancing both exploitation (of formation energy) and exploration (of dGCN
uncertainty). This approach allows us to select stable candidate structures
from ensembles of structures, which is convenient for our chosen application
since HEA properties, like stability, are functions of ensemble averages.

We use two philosophically different approaches to create ensembles
and sample ternary structures for the subsequent calculations: a physically
informed approach, with ensembles being equivalent to compositions, and a

data-informed approach, with clusters created in DMaps space using
k-means clustering as ensembles. For both approaches, we perform six
iterations of our active learning workflow, during each of which we sample
about 100 structures from the ensemble with the minimum value of the
acquisition function. DFT calculations are performed for these structures,
which are added to the training set before the dGCN is retrained. We
demonstrate that, with both sampling strategies, this active learning
workflow achieves comparable predictive capability to a more accurate data
set consisting of five times as many DFT calculations. However, the manner
in which these two strategies lead to improved models is different—the
physically motivated strategy appears akin to a depth-first approach,
wherein the model improves predictions in a local region of composition
space where sampling occurs during each iteration. In contrast, the data-
informed strategy is more akin to a breadth-first approach, such that it
samples a broader and more diverse subset of the space and builds a model
with globally improved predictions every iteration. Additionally, in the data-
informed scheme, DMaps lends interpretability to the dGCN’s predictions
by highlighting certain features of the low-dimensional manifold that align
with physical intuition.

Through our framework, we systematically extrapolate from a mate-
rials space that can be sufficiently evaluated using DFT, comprising binary
alloys, to an exponentially larger materials space consisting of ternary alloys,
which is challenging to sufficiently sample and evaluate using only DFT. The
results demonstrate that significant dimensionality reduction, and con-
sequent gains in efficiency, are possible in thermodynamic sampling pro-
blems when suitable active learning schemes are employed. Moreover, this
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selected compositions (compared to the high-fidelity model) predicted by various
active-learned models (red: data-informed, blue: physics-informed) at every
iteration.

framework shows that both physically motivated and data-driven optimi-
zation strategies can be useful for computational materials design applica-
tions. To further explore the tradeoffs between these strategies, it would be
useful to extend the analysis to a wider space of alloys with differing ele-
ments, including high entropy alloys with at least five elements per alloy
unit. Another interesting possibility would be to train the dGCN model with
data representing surface sites. This analysis would provide information on
target properties of surfaces, such as the binding energy of a reaction
intermediate, which can assist the discovery of new catalytically active sites.

Methods

Density functional theory

In order to systematically enumerate, prune, and meaningfully gen-
erate binary and ternary alloy structures, we utilize our in-house code
HEAT (High-Entropy Alloy Toolbox) that leverages the Python
Atomic Simulation Environment (ASE)’', Python Materials Geno-
mics (Pymatgen)”, and Vienna Ab-initio Simulation Package
(VASP)* codes for high-throughput alloy calculations. We prescribe
the resolution of the composition space by selecting a 16-atom cubic
unit cell as our template. Initially, to populate the training space, we
enumerate all combinatorically possible discrete binary compositions
in the Pd-Pt-Sn alloy system and generate all the unique unrelaxed
configurations for each composition. The Pd-Sn and Pt-Sn binary
configurations are modeled as body centered cubic (bcc) structures
while the Pt-Pd binary configurations are modeled as face centered
cubic (fcc) structures. These structures are relaxed using DFT, and the
relaxed structures are used in the training set.

Further, we systematically enumerate all possible ternary compositions
at 16-atom unit cell resolution and generate unrelaxed face-centered cubic
(fcc) configurations for each composition having a lattice constant calcu-
lated using Vegard’s law™, which assumes that the lattice constant, a,, for an
alloy with composition x = (xpy, Xp, Xg, ), is the composition-weighted
sum of the pure-metal fcc lattice constants:

Ay = XpgApg + Xpp; + Xg,as, ()

To keep the analysis tractable, we sample only 1% of the total number
of configurations for each ternary composition. We perform a convergence
test to verify that there is negligible sampling error for this sampling per-
centage (see Supplementary Section 3.1 for details).

We convert the generated binary and ternary configurations into
equivalent graph representations, in which each node represents an atom in
the crystal structure, and each edge represents a bond (adjacency relation-
ship) between two atoms®. The nodes are characterized by atom-feature
vectors consisting of chemical and physical properties, and edges are
characterized by bond-features consisting of one-hot encoded vectors sig-
nifying the distance between two atoms. The node features are a subset of
those used in Xie et al. *, namely, electronegativity, covalent radius, valence
electrons, and first ionization energy. The bond feature vectors are com-
puted using a one-hot encoding of the bond distances. Further discussion
regarding node and bond feature vectors is provided in Supplementary
Section 5.3 and Ghanekar et al. .

Bulk structures are relaxed using periodic density functional theory
calculations performed using VASP. The Kohn-Sham orbitals are expanded
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in terms of a basis of planewave functions to an energy cutoff of 400 eV. The
frozen core approximation is used to model the core electron states, which
are expressed using the projector augmented wave (PAW)™ method. The
Perdew-Burke-Enzerhof (PBE)* exchange-correlation functional is used to
model effects of electron correlation and exchange. The Brillouin zone is
sampled using a K-point density of 30/A’ using the Monkhorst-Pack
scheme”. Electron states above the Fermi level are populated at 0 K using a
first-order Methfessel-Paxton smearing method™ with a width of 0.2 eV.
The electronic self-consistent field (SCF) iterations are carried out until the
electronic energy differences between subsequent iterations are below
1 x 10~°eV. Geometric optimization of the bulk structures is terminated
when the Hellman-Feynmann forces are below 1x107°eV/A. Bulk
relaxation is performed in two steps. First, the volume of the unit cell is
relaxed, and next, a geometric relaxation of atom positions at a fixed volume
is performed on the converged structure from the first step.

Dropout Graph Convolutional Networks

Our dGCN model is based on the crystal graph convolutional neural net-
work (CGCNN) framework" developed by Xie et al., which we outline here.
Beginning with a crystal graph as the model input, a sequence of convolu-
tional layers updates each atom feature vector v; according to the infor-
mation contained in feature vectors of neighboring atoms and the
corresponding bonds. In the notation of Xie et al,,

(t+1) t (t) (t) (t) ()
W=t Z,{:"(Z(w)k w8 os(=, W0 +1) o
Js

where z" W Weo v]m © u(;;) represents vector concatenation; the
symbol (Sl irfdicates an elementwisé product; and W}’ ) , Wg'), b}t), and bﬁ” are
weights and biases. Additional hidden layers are used to refine the network’s
learned representation of the local crystal structure at each atom. Finally, the
atom feature vectors are pooled, through a mean pooling function, to
produce a 42-dimensional latent space'’ vector that is fed to the hidden
layers in the network. These vectors, one for each crystal graph, are also
stored separately for subsequent dimensionality reduction using DMaps.

We modify the hidden layers in the network to incorporate dropout
using the Dropout layer in PyTorch™ with a 0.35 dropout probability. The
network is trained on the formation energy of each alloy structure predicted
using DFT. The training is performed for 500 epochs using the ADAM
optimizer” with the early stopping criterion®; the model with the lowest
validation error is chosen. In the prediction phase, the output is predicted 30
times for each input, and the mean and variance of this sample are used as
parameters for each structure’s subsequent UQ. We perform a sensitivity
analysis for hyperparameters that control the size of the network, namely,
the hidden layer size, number of hidden layers, and number of convolutional
layers, and find that the errors (MAE and RMSE) are most sensitive to the
hidden layer size (see Supplementary Section 5.3 for further details).

The binary input data are first divided randomly into train, validation,
and fest sets in a 60:20:20 ratio and subsequently passed through the net-
work. The (unrelaxed) ternary alloy structures are classified into a predict set
that is not used for training because no DFT data are initially available for
these structures. In the retraining procedure of the workflow, ternary alloy
structures from the predict set for which DFT energies have been evaluated
are labelled and added to the train, validation, and test sets in a 60:20:20 split.
The model training procedure outlined above is repeated for this new
dataset. See Supplementary Section 5 for additional details on calibration
and generalizability of our dGCN model.

Diffusion Maps

Inasmuch as diffusion maps may be thought of as a nonlinear analogue of
PCA, a brief explanation of the latter may be helpful in describing the
former. Given a cloud of points in some high-dimensional space, PCA first
identifies the direction in which the data exhibit the greatest variance, fol-
lowed by a sequence of further maximal-variance directions constrained to
be orthogonal to all previous such directions. If the data lie (at least

approximately) on alow-dimensional hyperplane, the sequence of variances
corresponding to these so-called principal component directions will show a
sharp decrease after exhausting the dimensionality of the hyperplane”. By
discarding those principal components with sufficiently small variance, it is
possible to represent the data with fewer effective coordinates and to
reconstruct the original data to a level of accuracy that depends on how
many components were retained.

Although PCA is powerful even in its simplicity, it suffers from the
limitation of only being able to describe linear relationships in the data it is
given. Diffusion maps, on the other hand, can parameterize both linear and
nonlinear manifolds. The DMaps algorithm uses a kernel function to
quantify pairwise similarity of the points in a data set, usually a Gaussian
kernel, which has the form

_ ||x_x/||2:| (4)

k(x,x') = exp{ >
€

where ¢ is a scale parameter chosen by the user. From the pairwise similarity
values, DMaps approximates the eigenfunctions of the Laplace-Beltrami
operator on the manifold from which the data are sampled’. These
eigenfunctions form a Fourier-like basis that includes functions which are
higher harmonics of other basis members as, for example, cos(kx, ) for k a
positive integer®'. From the perspective of parameterizing a manifold, these
higher harmonics do not provide any new information beyond that
contained in the lowest-frequency member of the sequence, so dimension-
ality reduction requires the practitioner to identify a minimal set of
informative eigenvectors that does not contain unnecessary redundancy. By
determining which approximated eigenfunctions to use, one can build a
parameterization for the manifold of interest that uses the minimal required
number of coordinates. Details about this process and further exposition on
DMaps are provided in Supplementary Section 1.

Gaussian process regression

Formally, a Gaussian process (GP) is a collection of random variables,
{Y,}, . any finite subset of which possesses a multivariate normal
distribution. It is also common to describe GPs as random functions in the
sense that fixing a value w € Q from the underlying sample space deter-
mines the observed value f(x|w) = Y, (w) at each x € X. GPs are a com-
mon choice for uncertainty quantification because they allow one to
compute a predictive distribution, rather than a point estimate, for function
outputs at unevaluated input locations. Given a set of observed input-output
pairs, {(x,-7 yi) }?:1, Gaussian process regression (GPR) computes a pos-
terior distribution for the output y* at a new input x*. As in DMaps, this
process involves a kernel function that characterizes how strongly two
outputs are correlated based on their corresponding inputs. Kernel func-
tions are more varied for GPR and are chosen for the functional properties
(e.g., differentiability or periodicity) they provide to the resulting regression
model. For example, an analogous form of the Gaussian kernel corresponds
to infinitely differentiable functions and is given by

T
kx, %) = Cov [f(x), /)] = o exp {‘ w} 5)

where £, 6% > 0 are hyperparameters whose values must be determined from
the training data.

Given an objective function, f : R?— R, Bayesian optimization (BO)
seeks a global minimizer by using sequentially updated GP models to select
subsequent search locations. This procedure replaces the original, difficult
optimization problem with a sequence of simpler ones involving an
acquisition function®, chosen by the user to balance the competing interests
of searching in locations with desirable predicted outputs (exploitation) and
those with high predictive uncertainty (exploration). One common family
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of acquisition functions is the lower confidence bound

acp(x) = p(x) — Po(x)

where y and o represent the predictive mean and standard deviation,
respectively, of the current GP model and 8 >0 controls the amount of
exploration. Each iteration of a BO algorithm uses an acquisition function to
choose a new point x* for objective evaluation, adds the observation
(x*,f(x*)) to the training data, and updates the GP model. Further details,
including a discussion of approaches to GPR designed for cases with noisy
measurements, are provided in Supplementary Section 2.

Data availability

Graphical representations of data are reported in the manuscript and
Supplementary Information. Upon acceptance, the raw data sets of alloy
structures, formation energies, and scripts/notebooks to access them will
also be uploaded to the following GitHub repository: https://github.itap.
purdue.edu/GreeleyGroup/active_learning.

Code availability
Full details of the requisite codes can be accessed at https:/github.itap.
purdue.edu/GreeleyGroup/active_learning upon acceptance.
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